Function reference
-
sim_true_counts()
- Simulate true scRNA and scATAC counts from the parameters
-
add_expr_noise()
- Add experimental noise to true counts
-
divide_batches()
- Divide batches for observed counts
-
add_outliers()
- Add outliers to the observed counts
-
plot_cell_loc()
- Plot cell locations
-
plot_gene_module_cor_heatmap()
- Plot the gene module correlation heatmap
-
plot_grid()
- Plot the CCI grid
-
plot_grn()
- Plot the GRN network
-
plot_phyla()
- Plot a R phylogenic tree
-
plot_rna_velocity()
- Plot RNA velocity as arrows on tSNE plot
-
plot_tsne()
- Plot t-SNE visualization of a data matrix
-
gene_corr_cci()
- Plot the ligand-receptor correlation summary
-
gene_corr_regulator()
- Print the correlations between targets of each regulator
-
run_shiny()
- Launch the Shiny App to configure the simulation
-
scmultisim_help()
- Show detailed documentations of scMultiSim's parameters
-
cci_cell_type_params()
- Generate cell-type level CCI parameters
-
gen_clutter()
- generate a clutter of cells by growing from the center
-
Phyla1()
- Creating a linear example tree
-
Phyla3()
- Creating an example tree with 3 tips
-
Phyla5()
- Creating an example tree with 5 tips
-
GRN_params_100
- 100_gene_GRN is a matrix of GRN params consisting of 100 genes where: # - column 1 is the target gene ID, # - column 2 is the gene ID which acts as a transcription factor for the target (regulated) gene # - column 3 is the effect of the column 2 gene ID on the column 1 gene ID
-
GRN_params_1139
- GRN_params_1139 is a matrix of GRN params consisting of 1139 genes where: # - column 1 is the target gene ID, # - column 2 is the gene ID which acts as a transcription factor for the target (regulated) gene # - column 3 is the effect of the column 2 gene ID on the column 1 gene ID
-
dens_nonzero
- this is the density function of log(x+1), where x is the non-zero values for ATAC-SEQ data
-
gene_len_pool
- a pool of gene lengths to sample from
-
len2nfrag
- from transcript length to number of fragments (for the nonUMI protocol)
-
param_realdata.zeisel.imputed
- distribution of kinetic parameters learned from the Zeisel UMI cortex datasets
-
Get_1region_ATAC_correlation()
- This function gets the average correlation rna seq counts and region effect on genes for genes which are only associated with 1 chromatin region
-
Get_ATAC_correlation()
- This function gets the average correlation rna seq counts and chromatin region effect on genes
-
True2ObservedATAC()
- Simulate observed ATAC-seq matrix given technical noise and the true counts
-
True2ObservedCounts()
- Simulate observed count matrix given technical biases and the true counts
-
sim_example_200_cells()
- Simulate a small example dataset with 200 cells and the 100-gene GRN
-
sim_example_200_cells_spatial()
- Simulate a small example dataset with 200 cells and the 100-gene GRN, with CCI enabled