Function reference
-
sim_true_counts() - Simulate true scRNA and scATAC counts from the parameters
-
add_expr_noise() - Add experimental noise to true counts
-
divide_batches() - Divide batches for observed counts
-
add_outliers() - Add outliers to the observed counts
-
plot_cell_loc() - Plot cell locations
-
plot_gene_module_cor_heatmap() - Plot the gene module correlation heatmap
-
plot_grid() - Plot the CCI grid
-
plot_grn() - Plot the GRN network
-
plot_phyla() - Plot a R phylogenic tree
-
plot_rna_velocity() - Plot RNA velocity as arrows on tSNE plot
-
plot_tsne() - Plot t-SNE visualization of a data matrix
-
gene_corr_cci() - Plot the ligand-receptor correlation summary
-
gene_corr_regulator() - Print the correlations between targets of each regulator
-
run_shiny() - Launch the Shiny App to configure the simulation
-
scmultisim_help() - Show detailed documentations of scMultiSim's parameters
-
cci_cell_type_params() - Generate cell-type level CCI parameters
-
gen_clutter() - generate a clutter of cells by growing from the center
-
Phyla1() - Creating a linear example tree
-
Phyla3() - Creating an example tree with 3 tips
-
Phyla5() - Creating an example tree with 5 tips
-
GRN_params_100 - 100_gene_GRN is a matrix of GRN params consisting of 100 genes where: # - column 1 is the target gene ID, # - column 2 is the gene ID which acts as a transcription factor for the target (regulated) gene # - column 3 is the effect of the column 2 gene ID on the column 1 gene ID
-
GRN_params_1139 - GRN_params_1139 is a matrix of GRN params consisting of 1139 genes where: # - column 1 is the target gene ID, # - column 2 is the gene ID which acts as a transcription factor for the target (regulated) gene # - column 3 is the effect of the column 2 gene ID on the column 1 gene ID
-
dens_nonzero - this is the density function of log(x+1), where x is the non-zero values for ATAC-SEQ data
-
gene_len_pool - a pool of gene lengths to sample from
-
len2nfrag - from transcript length to number of fragments (for the nonUMI protocol)
-
param_realdata.zeisel.imputed - distribution of kinetic parameters learned from the Zeisel UMI cortex datasets
-
Get_1region_ATAC_correlation() - This function gets the average correlation rna seq counts and region effect on genes for genes which are only associated with 1 chromatin region
-
Get_ATAC_correlation() - This function gets the average correlation rna seq counts and chromatin region effect on genes
-
True2ObservedATAC() - Simulate observed ATAC-seq matrix given technical noise and the true counts
-
True2ObservedCounts() - Simulate observed count matrix given technical biases and the true counts
-
sim_example_200_cells() - Simulate a small example dataset with 200 cells and the 100-gene GRN
-
sim_example_200_cells_spatial() - Simulate a small example dataset with 200 cells and the 100-gene GRN, with CCI enabled